Disclaimer: The following material is being kept online for archival purposes.

Although accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers.

TEN THINGS YOU THOUGHT YOU KNEW ABOUT SUN-EARTH SCIENCE

A list of common and uncommon, famous and infamous misconceptions about solar-terrestrial physics...

+ Earth is closest to the Sun is the summertime or, it is warmer in summer because Earth is closer to the Sun
False. This is by far the most common misconception about the relationship between Sun and Earth, one that is unfortunately perpetuated by lousy diagrams in most school textbooks. When someone says we are closer to the Sun in the summertime, do you ever remind them that while it may be summer in the northern hemisphere, it is wintertime in the southern hemisphere...and six months from now, the seasons and Earth's position will be reversed? In fact, in summer in the northern hemisphere, Earth is actually at its farthest point away from the Sun. So how can that be?

Despite what you learned in school about Earth's "elliptical" orbit around the Sun, that elliptical orbit is pretty close to being circular (not the extended oval you see in most books). The change of seasons is mainly the result of the tilt of Earth's invisible spin axis, which is inclined 23.5 degrees in comparison to the axis of the Sun. Sometimes Earth's axis is tilted toward the Sun and sometimes away from it -- and somewhere in between for the rest of the year. It is this tilt ­ combined with the motion of the Earth around the Sun ­ that causes more or less light to fall on one hemisphere or the other during each of the seasons. This means that the amount of sunlight falling directly on a parcel of Earth changes throughout the year. It also means that days get longer or shorter, causing the Sun to warm part of the Earth for longer and shorter periods of each day. To learn more, visit http://www.badastronomy.com/bad/misc/seasons.html or
http://istp.gsfc.nasa.gov/stargaze/Sseason.htm or
http://aa.usno.navy.mil/faq/docs/seasons_orbit.html

+ The Sun does not rotate
False. Like almost everything else in our clockwork universe, the Sun rotates around an invisible axis. The rotation of the Sun was actually one of Galileo's greatest discoveries. By observing sunspots moving across the face of the Sun, Galileo figured out that it wasn't just the spots that were moving, but the whole star. It takes an average of 27 days for the Sun to make a full rotation, though the rate is actually about 25 days at the equator and as many as 32 days near the Sun's poles. This "differential" rotation ­ where the equator spins faster than the poles -- is perhaps the leading cause of the magnetic mayhem on the Sun that leads to sunspots, flares, and coronal mass ejections.

+ The Sun has a solid surface
False. The song by Smash Mouth says, "You might as well be walking on the Sun." Fat chance. The Sun is made entirely of gas, so there isn't a fixed, solid surface. The part that looks like the surface -- the photosphere -- is simply the region of gas on the edge of the Sun that emits light in wavelengths that we can see. (Did we mention that you would be vaporized before you got close enough to walk on the Sun?)

+ Space is empty, a complete vacuum
False. Space is filled everywhere by plasma, the fourth state of matter (solid, liquid, gas, and plasma). Plasma is a gas in which electrons have been separated from their atoms (ions), making it electrically charged. Plasma is extremely rare on Earth; you can only find it in candle flames, lightning, and fluorescent lights. But in fact, 99% of the universe is made up of plasma. Of course, space is so vast that all this plasma gets spread out to a point where it seems like a vacuum by our earthly standards.

+ The solar wind and coronal mass ejections (CMEs) can exert enough pressure to push a satellite out of its orbit
False. Despite the electromagnetic havoc they play with satellite electronics and with Earth's magnetic field, the solar wind and CMEs barely exert a pressure or force that you could measure. In fact, they couldn't ruffle the hair on your head. The solar wind has fewer particles per cubic centimeter than the best vacuums scientists have ever created on Earth. Our own air is billions of times denser than the solar wind, such that a cubic centimeter of air has as many particles as a cube of solar wind measuring 10 kilometers on each side.

Satellites do sometimes fall out of orbit due to space weather events. But it is Earth's own atmosphere that drags them down, not pressure from the solar wind or a CME. When a space weather event stirs up the space around Earth, the upper atmosphere of Earth becomes hotter and denser, leading to more friction on the surface of the satellite. This friction can slow a satellite down just enough that it slowly ­ over months to years ­ can drop out of orbit.

+ Auroras are caused by solar wind particles hitting Earth's atmosphere
Not really. Auroras are caused by particles (mostly electrons) being guided by Earth's magnetic field into the atmosphere, where they bounce off and collide with air molecules. These collisions excite ­ give energy to ­ the air molecules. To release that excess energy, the air molecules (mostly oxygen and nitrogen) emit the light that we call the aurora. But the electrons that cause auroras do not come directly from the Sun. At the beginning of the Space Age, scientists discovered that the space around Earth is filled with plasmas ­ hydrogen electrons and protons ­ trapped by our planet's magnetic field. These particles are collected over long periods of time from the solar wind, or they have leaked out of our own atmosphere. When a solar storm erupts, the impact of the event can distort and energize Earth's magnetic field. Some of this energy energizes the particles already trapped around Earth, causing them to slide down those field lines into Earth's upper atmosphere, to smash into the gas of the atmosphere, and to release photons of light.

+ You can only see auroras (Northern and Southern Lights) at the poles.
False. Actually, auroras are quite rare at the geographic (or geomagnetic poles). As mentioned above, auroras occur when particles that are trapped inside Earth's dipolar magnetic field slide down those field lines into the atmosphere. Auroras occur (geographically) where these field lines connect down to Earth, principally between 60 and 70 degrees of magnetic latitude (There are complicated, unusual circumstances that can cause auroras at the actual poles, but those are not the common forms of auroras that we see). The auroral zones of Earth take the form of rings around the magnetic poles, most often cutting a path across Canada, Alaska, Greenland, Scandinavia, and Russia (in the southern hemisphere, the oval hangs principally over the ocean circling Antarctica). In fact, if you made an expedition to the north coast of Alaska, you would likely have to turn to the South to see the aurora. Learn more by visiting here

+ Solar maximum is a single episode of high activity or, the solar maximum is a brief event that happens on a particular
False. Solar maximum describes the period ­ usually one to one-and-a-half years ­ when the Sun is most active. Solar maximum is the peak or hump on a mathematical curve of the number of sunspots seen from Earth each day. This number can rise or fall from day to day, month to month, but eventually the plot shows a period when the average number of sunspots is higher than at any other time in the 11-year cycle. In other words, the day with the most sunspots does not have to be the peak of solar maximum, nor is it necessarily the month with the highest number. (It is similar to charting high tide along the seashore. "High tide" is not necessarily the moment of the absolutely highest wave, but the time when the average of wave heights is higher than at any other time in a day.) The time of solar maximum can be guessed, based on past history of the sunspot plot. But it can only be determined with certainty many months after it is over, when scientists see when the number of sunspots stopped increasing and started steadily decreasing.

+ The best time of year to see an aurora is the winter
Yes and no. Because it is dark for much longer periods of each winter's day, you have a longer night in which to see an aurora. And when skies are clear, they are a little less murky (with less haze, water vapor, etc.) in the wintertime. However, it is also more likely for skies to be cloud-covered in winter. Weather and darkness aside, there is no physical reason why auroras should be more common in winter than summer. Low levels of auroral activity occur every day of the year in the northernmost (or southernmost) regions of Earth. For reasons that space physicists cannot fully explain, the best auroral shows occur most often around the times of the vernal (spring) and autumnal (fall) equinoxes. Great auroras ­ the once-in-ten years sort that come down to Texas or the Caribbean ­ can occur anytime the Sun decides to produce a great space weather event.

+ Sunspots are dark and cool
True and false. Again, this is a matter of relativity (not Einstein's kind, the comparative kind). When compared to the 5500-degrees Celsius in the photosphere (the visible surface of the Sun), sunspots are cooler ­ a mere 3500 degrees Celsius. But that is still hot enough to melt most solids from Earth. And as for being "dark" ­ sunspots are actually about as bright as a full Moon, but when compared to the brilliance of the rest of the Sun, they pale (or should we say darken?) in comparison.

************************
Other gee-whiz facts to impress your friends...

+ The Sun is an average star... This depends on how you define "average." On the absolute scale of the size of active stars from largest to smallest, our Sun is about medium mass and girth. But when you consider that most of the universe is made up of dying, shrinking dwarves, our Sun is actually larger, hotter, more massive, and brighter than the vast majority of all stars.

+ Comet tails always trail away from the Sun True. Whether a comet is inbound or outbound from the Sun, its tails will always point away from the Sun. That's because the comet's tails ­ they have both a dust tail and an ion tail ­ are formed when the pressure and heat of sunlight vaporize pieces of these icy snowballs, and the electromagnetic properties of solar wind strip ions from the chemical elements inside the comet.

+ Solar sails are pushed by (or harness the power of) the solar wind... False. Described by Arthur C. Clarke and other science fiction writers, solar sails are actually a viable concept for propelling spacecraft across the void of space. The science behind solar sailing is that photons of sunlight exert a faint but detectable force that can be collected and used to push a large sail. It would take a long time to get the spacecraft going, but once you start moving, the acceleration could be almost endless.

For more fun with science misconceptions, check out these web sites:

Bad Astronomy

Bad Science

Modern Myths Taught as Science


| HOME |

Questions or Comments: Webmaster
Official NASA Contact: ISTP-Project

Above is background material for archival reference only.

NASA Logo, National Aeronautics and Space Administration
NASA Official: Adam Szabo

Curators: Robert Candey, Alex Young, Tamara Kovalick

NASA Privacy, Security, Notices